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FOREWORD 

This is Volume I of the final report under Contract No.  Nonr 5006(00). 

The predictions which were performed before the test (Interim Report 

No.  SN 256-1) are contained in this volume together with some additional 

predictions that were omitted from the previous report because of new 

information on test conditions and because of insufficient time between 

contract reception and field test initiation*    The method of prediction 

is described in this report,  and Vols. II and III contain complete descrip- 

tions of the linear theories employed in these predictions.    Volume II 

also contains some natural extensions of the linear constant depth theory 

which may prove very useful for further considerations. 

It is interesting to note that since the work of wave prediction has been 

performed, two studies which are of direct interest to the Mono Lake 

project have been achieved under the sponsorship of ONR and SRI.    They 

are "A Generalized Theory for Waves on a Slope" including nonlinear 

effects, bottom friction and wave reflection,  and "A Synthesis of Theory 

and Experiments on Wave Run-up".    This predicting work has only 

partly benefitted from these two studies, which will be published in the 

near future. 
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ABSTRACT 

The purpose of this project was to predict the water waves generated 

by the Mono Lake field tests.    These tests consisted of detonating ten 

TNT explosions of approximately 95C0 pounds each, and measuring the 

water waves and run-up produced by the detonations. 

This volume of the final report contains these predictions and a brief 

description of the theoretical and empirical methods employed in per- 

forming the predictions.    The predictions presented here are precisely 

those issued in Interim Report SN 256-1 prior to the field tests with the 

exception of the run-up on radial 2 where the slope of th» deck was 

changed from 1/40 to 1/30.    The run-up predictions for radial 2 have 

been altered to reflect this change and those for radial 3 have been 

eliminated since that run-up deck was eliminated during the field tests. 

This report gives an indication of the reliability of the predictions by 

inserting a maximum expected envelope for the deep water predictions. 

The addition of more predictions was deemed useless since all pre- 

dictions will have to be altered slightly for correlation with the field 

test data so that they coincide with the precise charge weight and 

geometry at shot time.    Any additional predictions necessary for 

correlation with the experimental data can be performed with maximum 

efficiency at that time. 

I 
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1.    INTRODUCTION 

The purpose of this project was to perform predictions of the water 

waves, prior to the field tests, produced by TNT explosions in Mono 

Lake.   This objective has been fulfilled with Interim Report SN 256-1 

and this volume of the final report.   Furthermore, Vols. II and III of 

the final report contain clear elucidations of the linear theories used 

to perform some of these predictions as well as extensions to a more 

generalized formulation of the linear theory.    The results of this 

project and the experimental data from the field tests will form a firm 

basis upon which to evaluate the state of the art in performing such 

predictions, at least for relatively small high-explosive detonations. 

The predictions were based on a preliminary experimental plan and a 

topographical map of Mono Lake.   Slight alterations of the predictions 

will have to be performed prior to a correlation with the experimental 

data to account for variations from the original plan.    The charge weight 

will not be precisely 9500 pounds and the measurement stations may 

vary slightly relative to ground zero (GZ).   It was originally planned to 

extend the artificial run-up decks into the water in order to provide a 

constant slope from the point of breaking inception through the run-up. 

This was not accomplished and may have a non-negligible effect on the 

wave run-up.    The planned run-up deck on radial 3 was eliminated and 

the slope of the deck on radial 2 was altered in the field.    These changes 

are reflected in the predictions of this report.    All these variations can 

be compensated for upon analyzing the field data for verification of the 

various methods employed in performing the predictions. 

The prodictions performed consist of amplitude time curves at every 

station on the constant depth radial.    The computations were made from 

the initial assumption of a stationary symmetric water cavity with a 

lip, and the asymptotic solution was used at all measurement stations. 
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The use of the asymptotic solution at the nearest station is not warranted 

ne».r the front of the wave train; however, this can be analyzed when the 

field data are available. 

The theory of Roseau was used to compute the wave amplification over 

the area simulating the continental slope and this theory includes reflec- 

tion as well as linear shoaling as a function of wave number.   Each point 

of the wave envelope as computed by the axially symmetric constant 

depth linear theory was modified by an amplification factor from Roseau. 

The phase of the waves within the envelope was calculated from the 

former theory.    It was found that the waves within the wave train should 

behave according to the linear shoaling theory and the reflection effect 

was negligible. 

The wave propagation over the simulated continental shelf was again com- 

puted from the linear shoaling theory by calculating the amplification 

factor for each point of the wave envelope up to the point of breaking 

inception.    No dispersion was predicted during the propagation over 

this area since the first envelope of the wave train consists of shallow 

water waves in this area (i.e.,   A. > > Id).    The effects of both viscous 

and turbulent friction were considered and nonlinear propagation effects 

were found to be negligible except ?u the near breaking area where they 

were included in a factor accounting for this effect. 

Predictions of the wave run-up for the maximum waves were made from the 

curves of Saville.   It was found that the maximum run-up should corre- 

spond to the waves of maximum amplitude.    It was assumed that the 

bottom slope was constant and equal to the slope of the artificial run-up 

decks.    A prediction of the run-up of each predicted wave from one shot 

at the i/50 slope was performed.    The curves of Saville were used for 

all but the leading wave which was computed from the theory of Le Mehaute 

for a solitar'  wave. 
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From preliminary reports of the run-up,  it appears that all predictions 

were within 50 percent of the measured values; however, a true assess- 
ment of the validity of various theories will have to wait for a compre- 
hensive correlation of the field data with the predictions. 
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2.    SHOT GEOMETRY,  WAVE INSTRUMENTATION, AND DESIRED 

PREDICTIONS 

The primary purpose of the Mono Lake test series is to obtain reliable 

data from field tests which will allow an assessment of the various 

theories developed for the prediction of the surface water wave effects 

and wave run-up produced by underwater explosions.   Accordingly, a 

preliminary experimental plan was established with the assistance of 

cognizant personnel involved in the DOD wave program.    The Water- 

ways Experiment Station at Vicksburg, Mississippi implemented this 

preliminary plan and carried out the field tests.    This section of the 

report presents the shot geometry; experimental plan and desired 

predictions,, 

Figure 1 depicts Mono Lake with the depth contours and proposed 

instrumentation.    The run-up decks indicated were changed after the 

predictions had been performed.    The radial 1 run-up deck remained 

as planned,  radial 3 was not ir.strumented for run-up, and the slope 

of the run-up deck on radial 2 was altered from 1/40 to 1   30.    The 

artificial run-up decks were not extended into the water and the actual 

bottom profile near shore of radials 1 and 2 are shown in Fig. 2.    These 

profiles were recorded one day before detonation of the first shot of the 

test series and were furnished by Dr.  R.  E.  Kent. 

The charges detonated were spherical TNT charges of approximately 

9500 pounds, the precise charge weight being determined at the test 

site.    Charge placement was performed with a triangular shaped sur- 

face float made of relatively light material having little effect upon the 

generation process.    Table 1 shows the geometry of the detonations. 

Predictions were performed for shots 1-9.    Shot 10 was a shallow 

water explosions which can be used to validate the nonsaturated. 

breaker theory of Le Me'haute*. 

. 
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Mono Lake Bottom Topography and Planned Instrumentation 
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TABLE  1 

PLANNED SHOT GEOMETRY 

Shot No,       Explosion Depth (z, ft.) Reduced Depth (z/W°* 3) 

1 -  8.64 

2 - 1.08 

3 -54.0 

4 -  4.32 

5 0.00 

6 -43.2 

7 -   1.51 

8 -64.8 

9 -  0.65 

10 undecided 

Shots 1-9 detonated at GZ as shown in Fig.  1 

Assumed W - 9500 lbs. 

-0.54 

-0.07 

-3.41 

-0.27 

0.00 

-2.73 

-0.10 

-4.08 

-0.04 
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3.    METHOD OF PREDICTION 

The predictions involved the use of four methods,  each of which is 

described below.    The expected reliability of each method is discussed 

and indicated in the deep water predictions. 

3. 1     Generation Mechanism and Deep Water Predictions 

The generation mechanism was simulated by a stationary symmetric 

water cavity with a lip such that the volume of water above the undis- 

turbed free surface (lip volume) was equivalent to the volume of the 

water cavity.    This condition conserves the mass of the fluid and, 

analytically speaking, removes the bore from the front of the wave 

train.    Previous experimental results indicate that a bore does not 

precede the wave train.    Figure 3 shows the initial deformation 

considered. 

v± 3*7. 

Figure 3 

Representation of the Generation Mechanism 
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This initial deformation is represented by 

■V o' 

r-    4 r o 

3R 

0 

4r< 

3R' 
+ 1 r     * o yr R 

~\ß   R 

The usual asymptotic solution (method of stationary phase, m. s. p.) 

was used to evaluate the integral obtained from the solution to the 

Laplace equation in cylindrical coordinates with the linearized free 

surface condition, the bottom condition for constant water depth, the 

above initial deformation and zero initial velocity distribution in the 

fluid.    The wave amplitude is then expressed by 

n{r>t)   =  7 V^Pmi     \ (m) COS {mr " Vmtanhm  t) 

where 

r      =   r'/d    =   dimensionless distance from the origin 

m     =   m'd     =   dimensionless wave number 

t       =   t' vff  =   dimensionless time after   the detonation 

_   1   -, / tanh m    . 1 -. / <p(m) m 
tanh m 

£ 
t 

and the prime variables are dimensional 

T?0(m) 

Vm> 

??(r,t) 

d 

=   zero order Hankel transform of the initial deformation 

=   Srt  'o^JoKl^o'-T   J4<V3   mR> m 

n'(r,t)/d 

water depth (constant) 

gravitational acceleration 
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The above solution for the wave amplitude is developed in detail in Vol. 

II of this final report in which its relative merits and limitations are 

discussed.   Such natural extensions within the scope of the linear 

constant depth theory are also discussed in that volume; especially thoee 

regarding a time dependent or asymmetrical initial deformation. 

The evaluation of the parameters of the initial deformation,    f\     and R, 

is accomplished through the empirical relations (Whalin,   1965a) estab- 

lished from an analysis of WES test series.    Table II shows various 

parameters at the maximum of the first envelope, all of which were 

computed from the empirical relationships that were derived from WES 

data. 

The predictions on the constant depth radial, No.  4,  appear in Appendix 

A.    The uncertainty in the predictions is approximately ±20 percent. 

However, a maximum expected amplitude is represented on the pre- 

dictions and the probability of any measurements exceeding this limit 

is small (approx.  0.02 - 0.05). 

The arrival times at all proposed measurement stations were computed 

by using an average value, "^g h   , for the velocity of propagation of the 

wave front between each indicated depth contour of Fig.   1.    These arrival 

times are given in Table III. 

10 
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TABLE II 

PARAMETERS AT THE MAXIMUM OF THE 

FIRST ENVELOPE (CONSTANT DEPTH) 

ot No. ^ax *'<ft2> 
k '       (ft"1) max         ' 

\ '       (ft) max      ' T'       (sec) max 

1 942 0.0291 216 6.5 

2 1476 0.0337 187 6.1 

3 1237 0.0291 216 6.5 

4 956 0.0315 200 6.3 

5 1265 0.0344 182 6.0 

6 1251 0.0291 216 6.5 

7 1336 0.0334 188 6.1 

8 1054 0.0291 216 6.5 

9 1547 0.0340 185 6. 1 

I 
I 
I 
I 
I 
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Station 
No. 

1-1 

1-2 

1-3 

1-4 

1-5 

1-6 

1-7 

1-8 

1-9 

1-10 

1-11 

1-12 

1-13 

1-14 

1-15 

1-16 

1-17 

2-1 

2-2 

2-3 

2-4 

2-5 

2-6 

2-7 

2-8 

TABLE in 

PREDICTED ARRIVAL TIMES AT ALL MEASUREMENT? 

Radial 
Distance 

from GZ(ft) 
860 

1510 

2140 

2720 

3150 

3580 

3800 

4070 

4190 

4275 

4360 

4475 

4590 

4660 

4710 

4760 

4780 

3070 

3480 

3920 

4210 

4410 

4610 

4/50 

4890 

Arrival 
Time(sec) 

13.56 

23.91 

34.74 

45.52 

54.57 

66. Vi 

73.61 

84.08 

90. 18 

95.04 

100.17 

107.57 

115.52 

121.04 

125.75 

131.32 

136.61 

52. 18 

61.77 

75.81 

86.58 

95.64 

106. 14 

114.15 

122.61 

Station 
No. 

2-9 

2-10 

2-11 

2-12 

3-1 

3-2 

3-3 

3-4 

3-5 

3-6 

3-7 

3-8 

3-9 

3-10 

3-11 

3-12 

3-13 

3-14 

4-1 

4-2 

4-3 

4-4 

4-5 

Radial 
Distance 

from GZ (ft) 
4965 

5040 

5100 

5140 

1180 

1840 

2450 

2890 

3420 

3800 

4270 

4576 

4930 

5140 

5350 

5465 

5580 

5655 

430 

860 

1420 

2170 

3230 

Arrival 
Time(sec) 

127.44 

133.07 

139.18 

146.23 

18.56 

29.41 

39.85 

47.61 

57.69 

66.42 

80.20 

90.88 

105.45 

115.72 

127.18 

134.26 

143.38 

153.69 

6.46 

13.29 

21.95 

33.54 

49.92 

12 
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3. 2   Predictions at Stations over the Simulated Continental Slope 

The general problem of determining the amplitude of a wave propagating 

over an uneven bottom is accomplished from the following formula for 

periodic waves extracted from a pending report en generalized theory 

for waves on a slope: 

av. av.  r 
l 

1 l(x) 
1 

FT— 
o  av. 

fr(Df+D)dr 

where F     is the energy flux,  subscript t refers to the transmitted 

wave, and subscript i refers to the incident wave. 

F     is given by various formulas, depending upon the value of the 

Ursell parameter. 

1) On the deep water side, 

B 
L (# «   1, 

2) 

the linear theory can be used.    Also,  the principle of 

super-position is applied in such a way that R can be 

determined by application of the modified Roseau theory 

(assuming that nonlinear effects have a negligible in- 

fluence on reflection). 

On the shallow water side, the value of the transmission 

coefficient obtained from the Roseau theory does not 

always apply when 

H 
L G0 * 

13 
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Then F     must be expressed by nonlinear theory,  such 

as the Stokes theory at the third order, or the cnoidal 

wave theory. 

When 

£(# »  l, 

a nonlinear theory must be applied.    For the sake of 

simplicity,  and due to the timing, the following value 

has been used for the case of shallow water: 

I  p g H2   Vg (d + H) 

An exception must be made for a depth smaller than 

1.3 d,   (depth of breaking),  in which case a more com- 

plex theory has to be used. 

D,   and D    are the dissipative functions due to bottom friction and per- 

meability. 

[ 4     2        OfH" «r • 1 "2 -Jr. T   (sinh k d)_ 
,     f   E =   14.6 TTT 

I 
I 
I 
I 
I 
I 

D = ü!   pgp"2 , k = i£ 
p       VT     sinh 2 k d " 

D, has been calculated by assuming the shearing stress at the bottom 

to be quadratic and the friction factor to be n - 0. 03.    As a matter of 

fact, we may still be in a transitional regime.    D    was calculated by 

assuming the Darcy coefficient to be K = 0. 005, which corresponds to 

the texture of the sand in Mono Lake insofar as it can be determined. 

14 
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In practice, bottom frierina effects have been neglected on the conti- 

nental slope and wave reflection has been neglected on the continental 

shelf. 

.,-! 

The problem of propagating the explosion-generated wave train over an 

uneven bottom, which resembles a continental slope, was solved approx- 

imately by the linear theory of the propagation of periodic waves over a 

continental slope (Vol. Ill of this report).    This particular theory allows 

one to consider the propagation of periodic waves over a bottom contour 

of the shape shown in Fig. 4.    The parameters of this bottom contour 

UNDISTURBED   FREE   SURFACE 

1 
: 

! 

i 
n 
u 

la 
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c 
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I 

lAii 

w« 
Figure 4 

Roseau   Bottom Contour 

can be chosen so that it approximately fits a continental slope contour. 

The methods and Tables necessary for fitting these contours to various 

cases are given in Section 7,  Vol.  Ill of this report.    The parameters 

p   =   h./h_   =   6 and a   =   ff/28 were found for the Mono Lake radials. 

The reflection coefficient was negligible for Mono Lake in the period 

range 5 < T < 50 seconds which includes,  for all practical purposes, 

the entire first envelope of the wave train.    The transmission coeffi- 

cient is shown as function of period in Fig.  5. 

15 
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In applying this theory one merely modifies the wave envelope by 

multiplying respective points on the envelope by the transmission co- 

efficient given in Fig. 5.    This factor gives the frequency modification 

due to linear shoaling and a linear reflection coefficient, where it must 

be assumed that the frequencies associated with respective points on 

the wave envelope behave in a similar manner to periodic progressive 

waves where the principle of conservation of energy flux is assumed. 

Initially, this may seem to be a drastic assumption for explosion- 

generated waves.    However, if one computes the wave envelope from 

the linear constant depth theory and considers the values of d,   T, and 

X associated with various points of the envelope and plots these points 

on Fig. 6, then they all coincide very closely to line of linear wave 

shoaling.    This indicates that the wave envelope should indeed behave 

in a linear manner consistent with the theory being applied.    Actually, 

this should not come as a surprise since linear theories are being 

applied throughout both these phases of the wave propagation.  Therefore, 

it is concluded that the frequency modification factor for the wave 

envelope,  computed in this manner,  should be reliable.    Since the re- 

flection coefficient is negligible,  the end result is equivalent to apply- 

ing the linear shoaling theory for periodic waves by using the method 

of conservation of energy flux.    In addition,  it also is equivalent to the 

geometrical optics method (Van Dorr,   1964) when applied to a radial 

which is normal to the bottom contours.    The preceding three methods 

of computing a frequency modification factor for the wave envelope are 

equivalent under the specified conditions. 

Appendix B contains amplitude time curves predicted at Mono Lake for 

one station on each radial where the wave envelope has been modified 

by the factor shown in Fig.  5.    It is difficult to assess the reliability of 

this method in modifying the wave envelope, however,  it is anticipated 

that the results will be reliable within ± 20 percent. 

16 
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3. 3   Wave Propagation on the Shell 

The wave propagation on the shelf and up to the point of breaking incep- 

tion involved the consideration of the following phenomena: 

a) Wave shoaling; should linear or nonlinear shoaling theory 

be used? 

b) Wave damping due to both viscous and turbulent friction. 

c) The wave height decay due to radial spreading.    The 

distance from the explosion is not sufficient for this effect 

to be negligible. 

d) The so-called "super elevation" of the waves just prior to 

breaking. 

e) The increase in the number of waves in the first envelope 

due to dispersion. 

As an input to this phase of the wave propagation, we have the amplitude 

time curves of Appendix B for each shot at a measurement station near 

the edge of the shelf.    The question of dispersion (e) is the easiest one 

to resolve.    From Appendix B one can observe that the wave heights are 

small and, from the periods associated with the wave train it is obvious 

that the wave lengths are sufficiently long that the waves are shallow 

water waves.    Hence no dispersive effects are to be expected during 

the propagation over the shelf. 

The next question to be considered is wave shoaling (a).    From compar- 

isons of the linear and nonlinear shoaling curves with the characteristics 

of the wave trains at the edge of the shelf,  it was determined that the 

waves should behave in a linear manner,  at least up to the near breaking 

point.    Furthermore,  computer runs were made where the effect of the 

nonlinear terms was considered and they were found to be negligible 

(less than 1 percent).    Therefore,  the linear shoaling theory is to be 

applied to each wave of the wave train and nonlinear effects are ignored 

up to the near-breaking point. 
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The effect of the radial spreading on the wave amplitude is compensated 
1/2 for by the usual term of (R. /R.)       ,  R. being the distance from GZ to 

the stations at the edge of the shelf and R? the distance from GZ to the 

station where the wave amplitude is desired. 

The friction effect is to be considered next. Both viscous and turbulent 

friction must be considered. The term that represents the friction and 

permeability effect for periodic waves is 

;,.JL IH*E .4* K .,] 

where 

K = permeability coefficient 

H = wave height 

d = water depth 

Ax = distance of propagation 

f = 14. 6n2/d1/3 and 

n = the Manning coefficient, which is taken to be 0.03 

In the case of solitary waves,  the term accounting for the friction effect 

becomes 

r.      8      fHLxl P-Ts   -7-J 

This formulation is to be used for the leading wave. 

Therefore,  the computation of the wave height at a depth d_  from the 

known height,  a depth d.   for periodic waves,  is found from the formula 

(14.6)n2
Hl(R2-Rl)      4„    K(R2 - R,) R     1/2 

H2 s L1 " 3TT ,d2 + d    7/3 T ,d1 + d2. IR^J 

\      2      / \      2       / 
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where nonlinear effects on the shoaling are negligible and H    is the 
8 

wave height obtained from tables of wave shoaling data.    The computa- 

tions were performed on the computer in a step-by-step procedure 

between each given depth contour until the breaking criteria of H,   = 

0. 78 d, was exceeded.    To account for the so-called "super-elevation" 

near the breaking depth the amplitude was computed at a depth  d   = 

1. 3 cL .    This value of the wave height at breaking was then multiplied 

by the factor  1.4 to account for the "super elevation" which has been 

observed experimentally.    That is,   H.  = 1.4H,  .    The reason for this 
n 

discrepancy with the Airy theory is undoubtedly due to nonlinear effects 

in the near-breaking region as the wave transforms from a symmetrical 

wave which does conform to the Airy theory to a humped wave profile 

which conforms to the solitary wave regime.    These computations of 

the breaking wave height result from a combination of theoretical and 

experimental research and are deemed to provide the best reliability 

in performing predictions. 

In order to obtain predictions at any station on the shelf one merely 

applies the linear shoaling theory to the predictions of Appendix B and 

corrects these by the factors accounting for friction and radial spreading. 

For the leading waves,  predictions at any station on the shelf can be 

obtained from Figs.  7,  8,  and 9, which show the wave modification on 

the shelf as a function of the distance from GZ for various initial wave 

amplitudes along radials 1,  2,  and 3 respectively.    The modification 

of wave amplitudes not depicted on these graphs can be performed by 

a linear interpolation between the given lines. 
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3. 4  Run-up Predictions 

The prediction of the wave run-up involves the assumption that three- 

dimensional effects are negligible and the determination of the type of 

wave present.    That is, the following questions must be considered: 

a) Are three-dimensional effects important? 

b) Is the wave which is causing the run-up a breaking or a non- 
breaking wave ? 

c) If the wave is a breaking wave, is it 

1. a non- saturated breaker ? 

2. a plunging breaker ? 

3. an intermediate type of breaker? 

d) Does the backwash have a non-negligible effect on the 

run-up of successive wave6 ? 

The shoreline contours at Mono Lake are very regular and three- 

El dimensional effects on the wave run-up were considered negligible, 

especially on the artificial run-up decks where the predictions were 

I performed. 

I   mm I It was determined that all but the leading wave and perhaps the second 

™ and third waves were breaking waves, probably of an intermediate type, 

\   M where the backwash would have a non-negligible influence on the run-up. 

£. Therefore,  the run-up prediction was performed from the curves of 

Saville  (1961) where the wave height H' is determined from 

I 
E 
I 
I 

TJ/        2, 66   TT3/2 
Ho = T~  Hb 

and the breaking wave height,  H, ,  is determined from the previous 

section.    The period to be assumed is that period associated with the 
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successive waves of the wave train shown in Appendix B at stations 

near the edge of the shelf.    Figure 10 shows the curves from Saville 

(1961) which were used to determine the wave run-up. 

Table IV gives the predicted wave run-up for the maximum waves of 

the envelope, which also corresponds to the maximum wave run-up of 

any wave.   It is also predicted which wave of the wave train gives the 

maximum run-up.    The run-up predictions of Table IV are the same 

for radial 1 as in the Interim Report SN 256-1.    However,  the run-up 

predictions for radial 2 are different because: 

i 
I 
I 
I 
1 
I 
I 
I 
1 

a) Radials 2 and 3 have been reversed in the nomenclature 

from the interim report (i. e. ,  radial 2 is now the middle 

radial and was formerly numbered 3). 

b) The run-up deck planned on radial 3 was eliminated. 

c) The slope on radial 2 was changed from 1/40 to 1/30, 

given in the experimental plan upon which the predictions 

of the interim report were based. 

Figure 11 shows the predicted run-up on radial 1 for each wave of the 

first envelope from Shot 2.    The run-up for the leading wave is pre- 

dicted by the assumption that it is a solitary wave; the method and 

curves of Le Mehaute'(1964) were used for this prediction.    It is not 

obvious which method to use for predicting the wave run-up of the 

second,  third and fourth waves; this is indicated by the broken line in 

Fig.   11.    Analysis of the data will greatly assist in performing future 

predictions for the leading waves. 

Detailed predictions for each wave of the wave train for every shot were 

not performed.    These predictions were deemed to be inefficient,  since 

they will have to be repeated during the analysis phase to conform to 

the actual field conditions and geometry existing at shot time. 
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• TABLE IV 

RUN-UP PREDICTIONS FOR THE MAXIMUM WAVES OF EACH SHOT 

Shot No. Radial Itfft.) Wav 

1 0.12 17 

2 j 0.18 19 

3 0.15 17 

4 0.12 18 

5 0.15 19 

6 0.17 17 

7 0.16 19 

8 0.13 17 

9 0.18 19 

1 2 0.22 17 

2      • ;s 2 0.32 19 

3 2 0.28 17 

4 2 0.22 18 

5 2 0.29 20 

6 2 0.28 17 

7 2 0.30 20 

8 2 0.24 17 

9 2 0. 33 20 

0 
I 
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4.     DISCUSSION OF THE PREDICTIONS AND THE EXPECTED 

WAVE SPECTRUM 

The predictions for the Mono Lake Experiment were considered to be 

performed from tins most reliable methods available to fit the geometry 

and field conditions at Mono Lake.    The predictions along the constant 

depth radial are relatively straightforward and involved an application 

of the methods developed by Whalin (1965a,   1965b,   1965c,  1964).    The 

reliability of these predictions is assumed to be ± 20 for most cases, 

and any improvement in this reliability without major new developments 

will have to come from the natural extensions to the linear theory which 

is indicated in Vol. II of this report. 

The methods, used on the slope and the shelf are considered to be re- 

liable within ± 10 to 20 percent.    The predictions for these areas are 

considered reliable within 30 to 40 percent when the uncertainty in the 

deep water linear constant depth theory is considered. 

The computations of the breaking wave height were made from a com- 

bination of theoretical methods and empirical data which indicated the 

existence of the "super-elevation" phenomena.    The run-up computations 

performed from the curves of Saville for the majority of the wave train 

and the curves of Le Mehaute'for the leading wave are considered to be 

reliable with ± 20 to 30 percent. 

In the fis->a* -»nalysis, when the uncertainty in each phase of the wave 

propagation is considered, the run-up predictions are expected to have 

a reliability of ± 50 to 70 percent for most cases.    It can be expected 

that unexplained anomalies may exist in the run-up measurements. 

These would be in the form of an unusually large or small run-up for 

one particular wave of the wave train in relation to the preceeding and 

succeeding wave.    Anomalies of this type can be a result of the partic- 

ular psriod of that wave and its phase in relation to the backwash and 

the background waves present in Mono Lake. 
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The run-up predictions were based upon the preliminary experimental 

plan that called for extending the slope of the artificial run-up decks 

into the water so the topography from the point of breaking inception 

was that of a constant slope of 1/50 and 1/30 for radials 1 and 2 re- 

spectively.    Since this was not the case, it could have a nor-negligible 

effect on the run-up.   Other factors which will affect the predictions are 

the exact charge weight,  assumed to be 9, 500 lbs, and the distances 

from the actual G Z to the various measurement stations and run-up 

decks.   All these factors must be considered when correlating the 

experimental data with the predictions.    At that time the predictions 

will be revised to account for all these slight variations from the 

experimental plan. 
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5.     CONCLUSIONS 

The desired conclusion of assessing the validity of these predictions 

performed for the Mono Lake Experiment will have to wait for a com- 

prehensive analysis of the data in relation to the predictions and the 

actual field conditions.    However, the objective of the project was ful- 

filled through Interim Report SN 256-1 and this volume of the Final 

Report.    Volumes II and III of the Final Report present a complete and 

detailed account of the linear theories which were employed in perform- 

ing some of these predictions.    These two volumes fill a gap which has 

existed in the literature.    Specific conclusions are related to each 

method. 

5. 1   Deep Water Constant Depth Predictions 

These predictions are expected to be. accurate within ± 20 percent; any 

consistent deviation beyond this would necessitate a revision in the 

prediction method for future detonations.    There are several natural 

extensions to the linear constant depth theory which should be investi- 

gated and which may increase the reliability of future predictions. 

The prediction at Station 4-1 was performed from the asymptotic 

solution which is not too reliable at a station this close to GZ.    The 

method of Whalin (1965b) should be applied to this station, and the data 

from this station should provide an excellent opportunity of evaluating 

the validity of the linear theory relatively near GZ.    The reason for 

not applying the integration method developed for areas near the source 

in these predictions is that it is relatively expensive to run the computer 

program.    The program would have to be rerun during the analysis 

phase when the precise charge weight and instrumentation geometry 

were known.    The correlation of these predictions with the data will 

enable us to increase the reliability of future predictions. 
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5. 2   Predictions of the Effect of the Slope 

The reflection effect of the slope on the wave train was predicted to be 

negligible and any deviation in this would be very unexpected.    Therefore, 

it is expected that these predictions, in conjunction with the experimental 

data, will afford an excellent basis upon which to evaluate the applicabil- 

ity cf the linear shoaling theory to this phase of the propagation.    The 

predictions will also enable one to determine and evaluate the dispersion 

in the wave train as it propagates over the slope. 

5. 3   Wave Propagation on the Shelf 

The linear shoaling theory,  corrected for the radial spreading of energy 

and viscous and turbulent friction effects, was applied to this phase of 

the wave propagation.    Although the friction effect was small, it was not 

negligible (on the order of 5 percent).    The analysis of the data will 

enable us to determine the applicability of the principle of conservation 

of energy flux and linear shoaling theory to the prediction of the propa- 

gation of non-breaking explosion waves on the shelf.    In addition, we 

should gain an insight into the method of treating the leading waves, 

i.e.,  can the leading wave or waves be treated as solitary waves or 

long waves up to breaking inception? 

Depending upon the comprehensiveness of the instrumentation in the 

breaking area, which shoxild have been adequate, we will be able to 

estimate the "super-elevation" effect and determine the validity of our 

methods of computing the wave height at breaking inception. 

Shot 10, being a shallow shot,  should afford one case for evaluating the 

non-saturated breaker theory of Le Me'haute',  and,  in addition,   should 

yield valuable information on the prediction of the generation and propa- 

gation characteristics of shallow water explosions. 
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5. 4  Run-up Predictions 

The run-up predictions are expected to be reliable within 50 percent 

with the exception of unexplained anomalies as previously mentioned. 

This experiment will yield data on the run-up of explosion waves, data 

relatively nonexistent under the controlled conditions present at Mono 

Lake.    These data should prove most beneficial in evaluating the rela- 

tively unproven methods of predicting the run-up of explosion-generated 

water waves, 

In summary,  the performance of these predictions prior to the field 

tests will provide a firm basis upon which to evaluate the present 

methods of predicting all phases of the wave propagation and run-up 

generated by underwater explosions in deep water.    Although some 

effects were found to be negligible,  such as reflection from the slope 

and nonlinear effects on the shelf prior to breaking,  it is anticipated 

that upon completion of the analysis of experimental results,  the ob- 

jectives of the overall program will be fulfilled,  and extensions and 

modifications of the presently used methods will increase the reliability 

of future predictions. 
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PREDICTIONS FOR DEEP WATER STATIONS 
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